If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-19x+8=2
We move all terms to the left:
10x^2-19x+8-(2)=0
We add all the numbers together, and all the variables
10x^2-19x+6=0
a = 10; b = -19; c = +6;
Δ = b2-4ac
Δ = -192-4·10·6
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-11}{2*10}=\frac{8}{20} =2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+11}{2*10}=\frac{30}{20} =1+1/2 $
| 6+x/5=37 | | 1/2(16x-20)=6x | | a+40=2a | | 0=d-34 | | t+62=9t-90 | | 105/x=5/15 | | b+9=10b | | 12+a=-3 | | u+46=2u | | 2z=z+21 | | 2a=a+66 | | (5+17)1/2=v | | 6b=b+55 | | 3)y+3=7y-21 | | 12x-28=-63+28 | | 7w+35=14w | | 3+5(2x-5)=48 | | 4t-8t=-32 | | 5d-4=41 | | 3x^+39x+36x=0 | | 3x=9=27 | | 26=46-3x | | (2)/(8)+(3)/(4)=(w)/(5) | | 16+2y=10y | | 3(2w-4)+20=27 | | 0.35 /2/ 3x=0.45 /x−10 | | 5(x-9)=-12 | | 12-6a=16-2a | | 4x+6x+50=180 | | 6.3m+17.5=42.7 | | -4+3x-4=-4-3x-4-4x | | 3(2w-4)+20=26 |